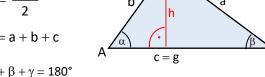


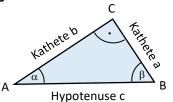
Abschlussarbeit Mathematik


Formelsammlung Realschule

Dreieck

$$A=\frac{g\cdot h}{2}$$

$$u = a + b + c$$


$$\alpha + \beta + \gamma = 180^{\circ}$$

Satz des Pythagoras

Im rechtwinkligen Dreieck ABC mit $\gamma = 90^{\circ}$ gilt:

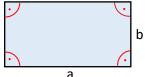
$$a^2 + b^2 = c^2$$

Quadrat

$$A = a^2$$
 oder $A = a \cdot a$

$$u = 4 \cdot a$$

Alle Innenwinkel sind 90° groß. Alle Seiten sind gleich lang.

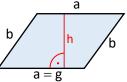

Rechteck

Ebene Figuren (Fläche A und Umfang u)

$$A=a\cdot b$$

а

$$u = 2 \cdot a + 2 \cdot b$$



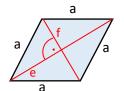
Alle Winkel sind 90° groß. Gegenüberliegende Seiten sind gleich lang.

Parallelogramm

$$A = g \cdot h$$

$$u = 2 \cdot a + 2 \cdot b$$

а


Benachbarte Winkel ergänzen sich zu 180°. Gegenüberliegende Seiten sind parallel und gleich lang.

Gegenüberliegende Winkel sind gleich groß.

Raute

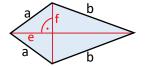
$$A = \frac{e \cdot f}{2}$$

$$u = 4 \cdot a$$

Alle Seiten sind gleich lang. Die Diagonalen e und f stehen senkrecht aufeinander.

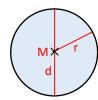
Trapez

$$A = \frac{a+c}{2} \cdot h$$


$$u = a + b + c + d$$

Mindestens zwei gegenüberliegende Seiten sind parallel zueinander (hier a und c).

Drachenviereck


$$A = \frac{e \cdot f}{2}$$

$$u = 2 \cdot a + 2 \cdot b$$

Jeweils zwei benachbarte Seiten sind gleich lang. Die Diagonalen e und f stehen senkrecht aufeinander.

Kreis (Radius r, Durchmesser d, Mittelpunkt M)

$$A = \pi \cdot r^2$$
 oder $A = \frac{\pi}{4} \cdot d^2$

$$u=2\cdot\pi\cdot r \ \textit{oder} \ u=\pi\cdot d$$

 $d = 2 \cdot r$

Kreisausschnitt (Kreisbogen ba, Mittelpunktswinkel a)

$$A_{\alpha} = \pi \cdot r^2 \cdot \frac{\alpha}{360^{\circ}}$$

$$b_{\alpha} = 2 \cdot \pi \cdot r \cdot \frac{\alpha}{360^{\circ}}$$

Der Kreisausschnitt A_{α} ist ein Teil der Kreisfläche. Der Kreisbogen b_{α} ist ein Teil des Kreisumfanges.

Kreisring (Radius großer Kreis r1, Radius kleiner Kreis r₂)

 $\mathsf{A}_{\mathsf{Ring}} = \mathsf{A}_{\mathsf{großer}\,\mathsf{Kreis}} - \mathsf{A}_{\mathsf{kleiner}\,\mathsf{Kreis}}$ $A_{Ring} = \, \pi \cdot r_1^2 \, - \pi \cdot r_2^2$

$$A_{Ring} = \pi \cdot (r_1^2 - r_2^2)$$

Abschlussarbeit Mathematik

Formelsammlung Realschule

Länge

Kilometer Meter Dezimeter Zentimeter Millimeter $1 \, \text{km} = 1000 \, \text{m}$ 1 m = 10 dm

1 dm = 10 cm 1 cm 10 mm

Fläche

Maßeinheiten

Quadrat Quadrat -Quadrat-Quadrat-Quadratkilometer millimeter meter dezimeter zentimeter 1 km² $= \ \ \, 1000\,000m^2$ $1 m^2 =$ 100 dm² $1 \, dm^2$ 100 cm² $1 \, \text{cm}^2$ 100 mm²

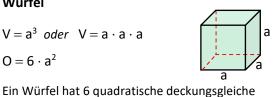
Volumen

Kubik -Kuhik-Kuhik-Liter (ℓ) Kuhikmeter dezimeter millimeter zentimeter $1 \, \text{m}^3 = 1000 \, \text{dm}^3$ $1 \ell = 1000 \, \text{m} \ell$ $1 dm^3 = 1000 cm^3$ $1 \, dm^3 = 1 \, \ell$ $1 \ cm^3 = 1000 \ mm^3$ $1~cm^3~=1~m\ell$

Hektar (ha) und Ar (a)

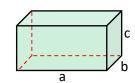
1 ha = 100 m \cdot 100 m = 10 000 m² $1 a = 100 m^2$

Masse


Tonne Kilogramm Gramm Milligramm 1t = 1000 kg= 1000 g 1 kg $1g = 1000 \, \text{mg}$

Körper (Volumen V, Oberfläche O, Grundfläche G, Mantelfläche M, Körperhöhe h,

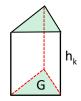
Würfel


 $V = a^3$ oder $V = a \cdot a \cdot a$

Quader

 $V = a \cdot b \cdot c$ $O = 2 \cdot a \cdot b + 2 \cdot b \cdot c + 2 \cdot a \cdot c$

Gegenüberliegende Rechtecke sind deckungsgleich.

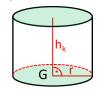

Prisma (Umfang u)

Seitenflächen.

 $V = G \cdot h_k$

 $O = 2 \cdot G + u \cdot h_{k}$

 $O = 2 \cdot G + M$

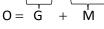


Zylinder (Radius r, Durchmesser d)

 $V = G \cdot h_k$ oder $V = \pi \cdot r^2 \cdot h_k$

$$O = 2 \cdot \pi \cdot r^{2} + 2 \cdot \pi \cdot r \cdot h_{k}$$

$$O = 2 \cdot G + M$$



Die Grundflächen G sind Vielecke. Sie sind deckungs-Die Grundflächen G sind deckungsgleiche, parallele gleich und parallel.

Kegel (Radius r, Durchmesser d, Seitenlinie s)

$$V = \frac{1}{3} \cdot G \cdot h_k \ oder \ V = \frac{1}{3} \cdot \pi \cdot r^2 \cdot h_k$$

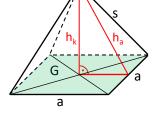
$$O = \pi \cdot r^2 + \pi \cdot r \cdot s$$

Die Grundfläche G ist ein Kreis.

Pyramide (Höhe einer Seitenfläche h_a, Seitenkante s)

$$V = \frac{1}{3} \cdot G \cdot h_k$$

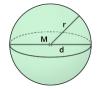
Die Grundfläche G ist ein Vieleck.


$$O = G + M$$

Die Mantelfläche M besteht aus Dreiecken.

Bei einer quadratischen Pyramide ist die Grundfläche G ein Quadrat.

$$V = \frac{1}{3} \cdot a^2 \cdot h_k$$


$$O = a^2 + 4 \cdot \frac{a \cdot h_a}{2}$$

Kugel (Radius r)

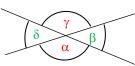
$$V = \frac{4}{3} \cdot \pi \cdot r^3$$

 $O = 4 \cdot \pi \cdot r^2$

Masse (Masse m, Dichte ρ (rho), Volumen V)

 $Masse = Dichte \cdot Volumen$

$$m = \rho \cdot V$$


Abschlussarbeit Mathematik

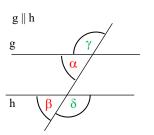
Formelsammlung Realschule

Winkel an sich schneidenden Geraden

Nebenwinkel ergänzen sich zu 180°.

$$\begin{aligned} \alpha + \beta &= \ \beta + \gamma = \ 180^{\circ} \\ \alpha + \delta &= \ \delta + \gamma = \ 180^{\circ} \end{aligned}$$

Scheitelwinkel sind gleich groß.

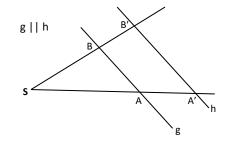

$$\alpha = \gamma$$
 und $\beta = \delta$

Stufenwinkel sind gleich groß.

$$\alpha = \beta$$

Wechselwinkel sind gleich groß.

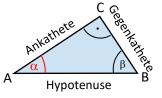
$$r = \delta$$



Strahlensätze (Anfangspunkt S)

Werden zwei Strahlen mit Anfangspunkt S von den parallelen Geraden g und h geschnitten, gelten die folgenden Strahlensätze.

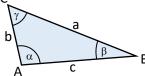
1.Strahlensatz:
$$\frac{\overline{SA}}{\overline{SA'}} = \frac{\overline{SB}}{\overline{SB'}}$$


1.Strahlensatz:
$$\frac{\overline{SA}}{\overline{SA'}} = \frac{\overline{SB}}{\overline{SB'}}$$
 2. Strahlensatz: $\frac{\overline{SA}}{\overline{SA'}} = \frac{\overline{AB}}{\overline{A'B'}}$

Trigonometrie

Trigonometrische Beziehungen im rechtwinkligen **Dreieck**

Im rechtwinkligen Dreieck ABC mit $\gamma = 90^{\circ}$ gilt:


$$sin \ \alpha = \frac{\text{Gegenkathete}}{\text{Hypotenuse}}$$

$$\cos\alpha = \frac{\text{Ankathete}}{\text{Hypotenuse}}$$

$$\tan \alpha = \frac{\text{Gegenkathete}}{\text{Ankathete}}$$

Trigonometrische Beziehungen im beliebigen **Dreieck**

In jedem Dreieck ABC gilt:

Sinussatz:

$$\frac{\mathsf{a}}{\sin\alpha} = \frac{\mathsf{b}}{\sin\beta}$$

$$\frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$$

$$\frac{c}{\sin \alpha} = \frac{a}{\sin \alpha}$$

Kosinussatz:

$$a^2 = b^2 + c^2 - 2 \cdot b \cdot c \cdot \cos \alpha$$
$$b^2 = a^2 + c^2 - 2 \cdot a \cdot c \cdot \cos \beta$$

$$c^2 = a^2 + b^2 - 2 \cdot a \cdot b \cdot \cos \gamma$$

Prozent- und Zinsrechnung

Prozentsatz p Prozentwert Pw

Grundwert G

Jahreszinsen Z

$$P_w = \frac{G \cdot p}{100}$$

$$p = \frac{P_{W} \cdot 100}{G}$$

$$G = \frac{P_W \cdot 100}{p}$$

$$Z = \frac{K \cdot p}{100}$$

K: Kapital, p: Zinssatz

Binomische Formeln

$$(a + b)^2 = a^2 + 2 \cdot a \cdot b + b^2$$

$$(a - b)^2 = a^2 - 2 \cdot a \cdot b + b^2$$

$$(a + b) \cdot (a - b) = a^2 - b^2$$

Potenzgesetze

gleiche Basis

$$a^m \cdot a^n = a^{m+n}$$
 (a \neq 0)

$$a^m: a^n = a^{m-n}$$
 (a

gleicher Exponent

$$a^{n} \cdot b^{n} = (a \cdot b)^{n}$$
 $(a \neq 0, b \neq 0)$

$$a^{m}: a^{n} = a^{m-n}$$
 $(a \neq 0)$ $a^{n}: b^{n} = (a : b)^{n}$ $(a \neq 0, b \neq 0)$ $a^{-n} = \frac{1}{a^{n}}$ $(a \neq 0)$ $a^{\frac{1}{2}} = \sqrt{a}$ $(a > 0)$

$$a^{-n} = \frac{1}{a^n} \qquad (a \neq 0)$$

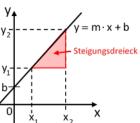
$$a^{\frac{1}{2}} = \sqrt{a} \quad (a > 0)$$

(a > 0, m > 0)

Abschlussarbeit Mathematik

Formelsammlung Realschule

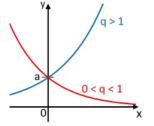
Gleichungen und Funktionen


Lineare Funktion (Steigung der Geraden m, y-Achsenabschnitt b)

y-Actisetiabsciiii

Normalform: $y = m \cdot x + b$

Steigung:


$$m = \frac{y_2 - y_1}{x_2 - x_1} \quad (x_2 \neq x_1)$$

Exponentialfunktion (Anfangswert a, Wachstumsfaktor g)

$$y = a \cdot q^x$$
 (a \neq 0)

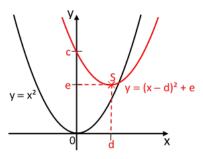
Abnahme: 0 < q < 1 Zunahme: q > 1

Quadratische Funktion

allgemeine Form:

$$y = a \cdot x^2 + b \cdot x + c$$
 (a \neq 0)

Scheitelpunktform:


$$y = a \cdot (x - d)^2 + e \quad (a \neq 0)$$

Scheitelpunkt:

S(d | e)

Schnittpunkt mit der

y-Achse: $S_v(0|c)$

Normalparabel: $y = x^2$

Quadratische Gleichung

Normalform der Funktion:

$$y = x^2 + px + q$$

Normalform der Gleichung:

$$x^2 + px + q = 0$$

Lösung mit der p-q-Formel:

$$x_{1/2}=-\frac{p}{2}\pm\sqrt{\left(\frac{p}{2}\right)^2-q}$$

Statistische Kenngrößen

Mittelwert (arithmetisches Mittel, Durchschnitt)

$$\overline{X} = \frac{\text{Summe aller Werte}}{\text{Anzahl aller Werte}} = \frac{X_1 + X_2 + \dots + X_n}{n}$$

Urliste

Liste ungeordneten Werte

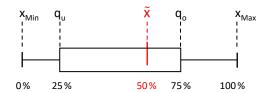
Rangliste

Liste geordneter Werte Die Werte sind nach der Größe sortiert.

Median (Zentralwert)

ungerade Anzahl von Werten in der Rangliste:

 \tilde{x} = Wert in der Mitte der Rangliste


gerade Anzahl von Werten in der Rangliste:

 $\tilde{X} = \frac{\text{Summe der beiden mittleren Werte}}{2}$

Statistische Kenngrößen im Boxplot

Minimum der Daten: x_{Min}
Maximum der Daten: x_{Max}

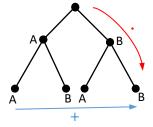
Spannweite der Daten: $x_{Max} - x_{Min}$

Median: $\tilde{\mathbf{x}}$ unteres Quartil: $\mathbf{q}_{\mathbf{u}}$ oberes Quartil: $\mathbf{q}_{\mathbf{o}}$

Wahrscheinlichkeit

Ergebnis: Ausgang eines Zufallsexperimentes

Ereignis: gewünschtes Ergebnis oder gewünschte Ergebnisse eines Zufallsexperimentes


Laplace-Wahrscheinlichkeit

 $P(Ereignis E) = \frac{Anzahl der für E günstigen Ergebnisse}{Anzahl aller möglichen Ergebnisse}$

P(Ereignis E) + P(Gegenereignis zu E) = 1

Mehrstufiges Zufallsexperiment

Baumdiagramm

1. Pfadregel (Produktregel):

Die Wahrscheinlichkeit für ein Ergebnis erhält man, indem man die Wahrscheinlichkeiten entlang des zugehörigen Pfades im Baumdiagramm multipliziert.

2. Pfadregel (Summenregel):

Gibt es für ein *Ereignis* E mehrere günstige Ergebnisse, werden die Wahrscheinlichkeiten der einzelnen Ergebnisse addiert.